organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3,4-Dimethylbenzaldehyde (3-pyridylcarbonyl)hydrazone monohydrate

Ming-Yang Hao,^a Yi-Min Feng^b and Xi-Shi Tai^{b*}

^aClinical College of Weifang Medical University, Weifang 261042, People's Republic of China, and ^bDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China Correspondence e-mail: taixishi@lzu.edu.cn

Received 13 June 2007; accepted 14 June 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.132; data-to-parameter ratio = 13.5.

In the crystal structure of the title compound, $C_{15}H_{15}N_3O \cdot H_2O$, $O-H \cdot \cdot \cdot O$, $O-H \cdot \cdot \cdot N$, $N-H \cdot \cdot \cdot O$ and $C-H \cdot \cdot \cdot O$ hydrogen bonds occur.

Related literature

For related literature, see: Tai et al. (2003).

Experimental

Crystal data $C_{15}H_{15}N_3O \cdot H_2O$ $M_r = 271.32$ Monoclinic, $P2_1/c$ a = 13.4762 (19) Å b = 6.5174 (14) Å c = 16.497 (2) Å $\beta = 101.629$ (2)°

 $V = 1419.2 (4) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 298 K $0.56 \times 0.53 \times 0.49 \text{ mm}$

Data collection

```
Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
T_{\rm min} = 0.953, T_{\rm max} = 0.959
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	183 parameters
$wR(F^2) = 0.132$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.21 \text{ e} \text{ Å}^{-3}$
2475 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ \AA}^{-3}$

6293 measured reflections

 $R_{\rm int} = 0.038$

2475 independent reflections

1583 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond	geometry	(A,	°)
---------------	----------	-----	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2 - H2 \cdots O2^{i}$	0.86	2.07	2.897 (2)	162
$O2 - H2A \cdots O1$	0.85	2.03	2.858 (2)	163
$O2 - H2B \cdot \cdot \cdot N1^{ii}$	0.85	2.11	2.936 (2)	163
C1−H1···O1	0.93	2.48	2.799 (2)	100
$C3 - H3 \cdot \cdot \cdot O2^{i}$	0.93	2.51	3.375 (3)	156
$C7 - H7 \cdots O2^{i}$	0.93	2.49	3.297 (3)	145

Symmetry codes: (i) x, y + 1, z; (ii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

The authors thank the National Natural Science Foundation of China (No. 20671073), NingXia Natural Gas Transferring Key Laboratory (No. 2004007), the Science and Technology Foundation of Weifang, and Weifang University for research grants.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2330).

References

Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Tai, X.-S., Yin, X.-H., Tan, M.-Y. & Li, Y.-Z. (2003). Acta Cryst. E59, 0681– 0682.

Acta Cryst. (2007). E63, o3252 [doi:10.1107/S1600536807029212]

3,4-Dimethylbenzaldehyde (3-pyridylcarbonyl)hydrazone monohydrate

M.-Y. Hao, Y.-M. Feng and X.-S. Tai

Comment

As part of our ongoing studies of the coordination chemistry of aroylhydrazones ligands (Tai *et al.*, 2003), we now report the synthesis and structure of the title compound, (I), (Fig. 1).

In the molecule of (I), both C7—N3 [1.269 (3) Å] and C6—O1 [1.216 (2) Å] are close to double-bond separations, indicating that the Lewis structure shown in the scheme is only an approximation to the electron distribution in the molecule. Otherwise, the geometrical parameters for (I) are normal. The dihedral angle between the pyridine and benzene ring mean planes is $10.69 (10)^\circ$, indicating that the molecule is non-planar, which perhaps correlates with the intramolecular O—H···O hydrogen bond (Table 1). An intermolecular N—H···O link also occurs.

Experimental

10 mmol of 3,4-Dimethylbenzaldehyde was added to a solution of nicotinic acid hydrazine (10 mmol) in 10 ml of ethanol. The mixture was continuously stirred for 3 h at refluxing temperature, evaporating some ethanol, then, upon cooling, the solid product was collected by filtration and dried *in vacuo* (yield 68%). Clear blocks of (I) were obtained by evaporation from a methanol solution after five days.

Refinement

The H atoms were placed geometrically (C—H = 0.93 - 0.96 Å, O—H = 0.85 Å, N—H = 0.86 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$ or $1.5U_{eq}(C_{\text{methyl}})$ or O_{water}).

Figures

Fig. 1. The molecular structure of (I), showing 30% displacement ellipsoids

3,4-Dimethylbenzaldehyde (3-pyridylcarbonyl)hydrazone monohydrate

Crystal data	
$C_{15}H_{15}N_3O{\cdot}H_2O$	$F_{000} = 576$
$M_r = 271.32$	$D_{\rm x} = 1.270 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2 y b c	Cell parameters from 1686 reflections

a = 13.4762 (19) Å b = 6.5174 (14) Å c = 16.497 (2) Å $\beta = 101.629 (2)^{\circ}$ $V = 1419.2 (4) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer	2475 independent reflections
Radiation source: fine-focus sealed tube	1583 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.038$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
φ and ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -15 \rightarrow 15$
$T_{\min} = 0.953, T_{\max} = 0.959$	$k = -7 \rightarrow 7$
6293 measured reflections	$l = -13 \rightarrow 19$

 $\theta = 2.7 - 26.9^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$ T = 298 K

Block, colourless

 $0.56 \times 0.53 \times 0.49 \text{ mm}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained
$wR(F^2) = 0.132$	$w = 1/[\sigma^2(F_o^2) + (0.0593P)^2 + 0.2072P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
2475 reflections	$\Delta \rho_{max} = 0.21 \text{ e } \text{\AA}^{-3}$
183 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2$ sigma(F^2) is used only for calculating -R-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.32848 (12)	0.7209 (2)	-0.01437 (8)	0.0570 (6)
N1	0.40161 (16)	1.0572 (3)	-0.20590 (10)	0.0613 (7)
N2	0.30314 (13)	1.0062 (3)	0.05661 (9)	0.0478 (6)
N3	0.26026 (13)	0.8926 (3)	0.11142 (10)	0.0472 (6)
C1	0.37042 (16)	0.9576 (3)	-0.14497 (12)	0.0508 (8)
C2	0.37106 (14)	1.0398 (3)	-0.06760 (11)	0.0374 (6)
C3	0.40561 (17)	1.2374 (3)	-0.05342 (12)	0.0499 (8)
C4	0.44022 (17)	1.3419 (4)	-0.11451 (13)	0.0565 (8)
C5	0.43719 (17)	1.2463 (4)	-0.18867 (13)	0.0571 (9)
C6	0.33334 (15)	0.9064 (3)	-0.00641 (11)	0.0411 (7)
C7	0.23315 (15)	0.9945 (3)	0.16883 (12)	0.0468 (7)
C8	0.18329 (15)	0.8997 (3)	0.22987 (11)	0.0424 (7)
С9	0.17182 (15)	1.0139 (3)	0.29861 (12)	0.0467 (7)
C10	0.12531 (15)	0.9365 (4)	0.35975 (12)	0.0469 (8)
C11	0.08658 (15)	0.7372 (4)	0.35100 (12)	0.0477 (8)
C12	0.09697 (16)	0.6241 (4)	0.28210 (12)	0.0505 (8)
C13	0.14457 (16)	0.7015 (3)	0.22211 (12)	0.0491 (8)
C14	0.11591 (19)	1.0666 (4)	0.43276 (14)	0.0676 (10)
C15	0.03416 (19)	0.6467 (4)	0.41503 (14)	0.0705 (10)
02	0.32861 (13)	0.4266 (2)	0.11411 (8)	0.0642 (6)
H1	0.34670	0.82420	-0.15520	0.0610*
H2	0.31050	1.13680	0.06230	0.0570*
Н3	0.40560	1.30010	-0.00280	0.0600*
H4	0.46520	1.47480	-0.10560	0.0680*
Н5	0.46140	1.31750	-0.22950	0.0690*
H7	0.24560	1.13490	0.17200	0.0560*
Н9	0.19640	1.14760	0.30370	0.0560*
H12	0.07100	0.49160	0.27610	0.0610*
H13	0.15070	0.62150	0.17670	0.0590*
H14A	0.15010	1.19480	0.42990	0.1010*
H14B	0.14600	0.99650	0.48290	0.1010*
H14C	0.04560	1.09170	0.43230	0.1010*
H15A	0.01530	0.50740	0.40050	0.1060*
H15B	-0.02540	0.72530	0.41740	0.1060*
H15C	0.07920	0.64950	0.46810	0.1060*
H2A	0.33440	0.53020	0.08410	0.0770*
H2B	0.35320	0.45640	0.16430	0.0770*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0900 (12)	0.0355 (10)	0.0492 (9)	-0.0060 (8)	0.0226 (8)	-0.0005 (7)
N1	0.0875 (14)	0.0591 (14)	0.0439 (10)	-0.0084 (11)	0.0289 (10)	-0.0033 (10)
N2	0.0710 (12)	0.0351 (11)	0.0436 (9)	-0.0046 (9)	0.0266 (9)	0.0025 (8)

0.0601 (11)	0.0424 (11)	0.0436 (10)	-0.0037 (9)	0.0215 (8)	0.0064 (8)
0.0706 (15)	0.0408 (14)	0.0438 (12)	-0.0054 (11)	0.0179 (11)	-0.0053 (10)
0.0438 (11)	0.0353 (12)	0.0338 (10)	-0.0004 (9)	0.0092 (8)	0.0001 (9)
0.0635 (14)	0.0491 (15)	0.0400 (11)	-0.0101 (11)	0.0171 (10)	-0.0062 (10)
0.0690 (15)	0.0501 (15)	0.0541 (13)	-0.0172 (12)	0.0212 (11)	-0.0038 (11)
0.0675 (15)	0.0621 (18)	0.0476 (13)	-0.0086 (13)	0.0254 (11)	0.0073 (12)
0.0480 (12)	0.0398 (14)	0.0358 (11)	-0.0027 (10)	0.0090 (9)	0.0014 (9)
0.0574 (13)	0.0394 (13)	0.0472 (12)	-0.0044 (11)	0.0189 (10)	0.0020 (10)
0.0445 (12)	0.0422 (14)	0.0429 (11)	-0.0020 (10)	0.0145 (9)	0.0031 (9)
0.0497 (13)	0.0406 (13)	0.0525 (12)	-0.0036 (10)	0.0168 (10)	-0.0026 (10)
0.0455 (12)	0.0555 (15)	0.0413 (12)	0.0025 (11)	0.0126 (9)	-0.0002 (10)
0.0442 (12)	0.0571 (16)	0.0441 (12)	0.0003 (11)	0.0143 (9)	0.0074 (11)
0.0510 (13)	0.0455 (14)	0.0566 (14)	-0.0101 (11)	0.0150 (11)	0.0029 (11)
0.0551 (13)	0.0490 (15)	0.0463 (12)	-0.0040 (11)	0.0175 (10)	-0.0030 (10)
0.0730 (16)	0.0771 (19)	0.0589 (14)	-0.0036 (14)	0.0279 (12)	-0.0122 (13)
0.0730 (17)	0.082 (2)	0.0650 (15)	-0.0105 (14)	0.0343 (13)	0.0083 (14)
0.1121 (13)	0.0394 (10)	0.0449 (8)	-0.0104 (9)	0.0250 (9)	0.0012 (7)
	0.0601 (11) 0.0706 (15) 0.0438 (11) 0.0635 (14) 0.0690 (15) 0.0675 (15) 0.0480 (12) 0.0574 (13) 0.0445 (12) 0.0445 (12) 0.0445 (12) 0.0455 (12) 0.0442 (12) 0.0510 (13) 0.0551 (13) 0.0730 (16) 0.0730 (17) 0.1121 (13)	0.0601 (11)0.0424 (11)0.0706 (15)0.0408 (14)0.0438 (11)0.0353 (12)0.0635 (14)0.0491 (15)0.0690 (15)0.0501 (15)0.0675 (15)0.0621 (18)0.0480 (12)0.0398 (14)0.0574 (13)0.0394 (13)0.0445 (12)0.0406 (13)0.0455 (12)0.0555 (15)0.0442 (12)0.0571 (16)0.0510 (13)0.0455 (14)0.0551 (13)0.0490 (15)0.0730 (16)0.0771 (19)0.0730 (17)0.082 (2)0.1121 (13)0.0394 (10)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Geometric parameters (Å, °)

O1—C6	1.216 (2)	C10-C14	1.499 (3)
O2—H2A	0.8500	C11—C12	1.385 (3)
O2—H2B	0.8500	C11—C15	1.505 (3)
N1-C1	1.334 (3)	C12—C13	1.379 (3)
N1—C5	1.332 (3)	C1—H1	0.9300
N2—N3	1.382 (2)	С3—Н3	0.9300
N2—C6	1.357 (3)	C4—H4	0.9300
N3—C7	1.269 (3)	C5—H5	0.9300
N2—H2	0.8600	С7—Н7	0.9300
C1—C2	1.383 (3)	С9—Н9	0.9300
C2—C3	1.373 (3)	C12—H12	0.9300
C2—C6	1.497 (3)	С13—Н13	0.9300
C3—C4	1.374 (3)	C14—H14B	0.9600
C4—C5	1.366 (3)	C14—H14C	0.9600
С7—С8	1.456 (3)	C14—H14A	0.9600
С8—С9	1.391 (3)	C15—H15C	0.9600
C8—C13	1.389 (3)	C15—H15A	0.9600
C9—C10	1.386 (3)	C15—H15B	0.9600
C10-C11	1.396 (4)		
01…02	2.858 (2)	C14…H15B	2.9100
O1…N3	2.678 (2)	C15…H14B	2.8400
O1···C3 ⁱ	3.420 (3)	C15…H14C	2.9200
O1…C14 ⁱⁱ	3.387 (3)	H1…O1	2.4800
O1…C10 ⁱⁱ	3.251 (3)	H1···C13 ⁱⁱ	3.0500
O2…N3	3.171 (2)	H1…C8 ⁱⁱ	2.9800
O2···C7 ⁱ	3.297 (3)	$H2 \cdots O2^{v}$	2.0700
O2…N2 ⁱ	2.897 (2)	Н2…С3	2.5900

O2···C3 ⁱ	3.375 (3)	H2…H7	2.1600
02…01	2.858 (2)	Н2…Н3	2.1200
O2…N1 ⁱⁱⁱ	2.936 (2)	H2A…N3	2.6400
O1···H2A	2.0300	H2A…O1	2.0300
O1…H1	2.4800	H2A…C4 ^{iv}	3.0900
O1…H14B ⁱⁱ	2.8300	Н2А…С6	2.8700
O2···H3 ⁱ	2.5100	H2A…H3 ⁱ	2.4000
O2…H7 ⁱ	2.4900	H2B…H7 ⁱ	2.5700
O2…H4 ^{iv}	2.8800	H2B····C5 ⁱⁱⁱ	2.7900
O2…H2 ⁱ	2.0700	H2B…N1 ⁱⁱⁱ	2.1100
N1···O2 ⁱⁱ	2.936 (2)	H3…N2	2.6600
N2···O2 ^v	2.897 (2)	H3····O2 ^v	2.5100
N3…O1	2.678 (2)	H3···H2A ^v	2.4000
N3…O2	3.171 (2)	H3…H2	2.1200
N1····H5 ^{vi}	2.7900	H4····O2 ^{iv}	2.8800
N1···H2B ⁱⁱ	2.1100	H5…N1 ^{vii}	2.7900
N2…H3	2.6600	$H7 \cdots H2B^{v}$	2.5700
N3···H2A	2.6400	H7···O2 ^v	2.4900
N3…H13	2.6700	H7…H2	2.1600
C1···C13 ⁱⁱ	3.529 (3)	Н7…Н9	2.4000
C3…O1 ^v	3.420 (3)	Н9…Н7	2.4000
C3…O2 ^v	3.375 (3)	H9…H14A	2.3100
C3···C6 ^{iv}	3.582 (3)	H12…H15A	2.3300
C6···C3 ^{iv}	3.582 (3)	H13…N3	2.6700
C7O2 ^v	3.297 (3)	Н14А…Н9	2.3100
C10…O1 ⁱⁱⁱ	3.251 (3)	H14B…C15	2.8400
C13···C1 ⁱⁱⁱ	3.529 (3)	H14B…H15C	2.4300
C14…O1 ⁱⁱⁱ	3.387 (3)	H14B…O1 ⁱⁱⁱ	2.8300
C3…H2	2.5900	H14C…C15	2.9200
C4···H2A ^{iv}	3.0900	H14C…H15B	2.5700
C5···H2B ⁱⁱ	2.7900	H15A…H12	2.3300
C6…H2A	2.8700	H15B…C14	2.9100
C8…H1 ⁱⁱⁱ	2.9800	H15B…H14C	2.5700
C13···H1 ⁱⁱⁱ	3.0500	H15C…C14	2.8400
C14…H15C	2.8400	H15C…H14B	2.4300
H2A—O2—H2B	109.00	C2—C1—H1	118.00
C1—N1—C5	116.36 (18)	N1—C1—H1	118.00
N3—N2—C6	118.30 (18)	С2—С3—Н3	120.00
N2—N3—C7	115.41 (18)	С4—С3—Н3	120.00
N3—N2—H2	121.00	C3—C4—H4	121.00
C6—N2—H2	121.00	С5—С4—Н4	121.00
N1—C1—C2	124.26 (19)	C4—C5—H5	118.00
C3—C2—C6	125.41 (17)	N1—C5—H5	118.00

C1—C2—C3	117.35 (18)	N3—C7—H7	119.00
C1—C2—C6	117.24 (17)	С8—С7—Н7	119.00
C2—C3—C4	119.58 (19)	С10—С9—Н9	119.00
C3—C4—C5	118.5 (2)	С8—С9—Н9	119.00
N1—C5—C4	123.9 (2)	C11—C12—H12	119.00
N2—C6—C2	115.69 (17)	C13—C12—H12	119.00
O1—C6—N2	122.78 (18)	C12—C13—H13	120.00
O1—C6—C2	121.52 (17)	C8—C13—H13	120.00
N3—C7—C8	122.44 (18)	C10—C14—H14A	109.00
С7—С8—С9	118.65 (18)	C10—C14—H14B	109.00
C7—C8—C13	123.22 (17)	H14A—C14—H14B	109.00
C9—C8—C13	118.12 (18)	H14A—C14—H14C	110.00
C8—C9—C10	122.66 (19)	C10—C14—H14C	109.00
C11—C10—C14	121.25 (19)	H14B—C14—H14C	109.00
C9-C10-C11	118.55 (19)	C11—C15—H15B	110.00
C9—C10—C14	120.2 (2)	C11—C15—H15C	109.00
C10-C11-C12	118.8 (2)	C11—C15—H15A	109.00
C10—C11—C15	120.71 (19)	H15A—C15—H15C	109.00
C12—C11—C15	120.5 (2)	H15B—C15—H15C	109.00
C11-C12-C13	122.2 (2)	H15A—C15—H15B	109.00
C8—C13—C12	119.63 (19)		
C5—N1—C1—C2	1.4 (3)	N3—C7—C8—C9	169.1 (2)
C1—N1—C5—C4	-2.0 (4)	N3—C7—C8—C13	-12.3 (3)
C6—N2—N3—C7	-179.72 (18)	C7—C8—C9—C10	179.93 (19)
N3—N2—C6—O1	-3.4 (3)	C13—C8—C9—C10	1.2 (3)
N3—N2—C6—C2	175.06 (16)	C7—C8—C13—C12	-179.0 (2)
N2—N3—C7—C8	177.64 (17)	C9—C8—C13—C12	-0.3 (3)
N1—C1—C2—C3	0.4 (3)	C8-C9-C10-C11	-1.4 (3)
N1-C1-C2-C6	-180.0 (2)	C8—C9—C10—C14	179.5 (2)
C1—C2—C3—C4	-1.8 (3)	C9-C10-C11-C12	0.6 (3)
C6—C2—C3—C4	178.6 (2)	C9-C10-C11-C15	-179.2 (2)
C1—C2—C6—O1	19.6 (3)	C14-C10-C11-C12	179.7 (2)
C1-C2-C6-N2	-158.97 (18)	C14—C10—C11—C15	-0.1 (3)
C3—C2—C6—O1	-160.9 (2)	C10-C11-C12-C13	0.2 (3)
C3—C2—C6—N2	20.6 (3)	C15—C11—C12—C13	-180.0 (2)
C2—C3—C4—C5	1.3 (3)	C11—C12—C13—C8	-0.4 (3)
C3—C4—C5—N1	0.7 (4)		

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) *x*, -*y*+3/2, *z*-1/2; (iii) *x*, -*y*+3/2, *z*+1/2; (iv) -*x*+1, -*y*+2, -*z*; (v) *x*, *y*+1, *z*; (vi) -*x*+1, *y*-1/2, -*z*-1/2; (vii) -*x*+1, *y*+1/2, -*z*-1/2.

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2—H2 \cdots O2 ^v	0.86	2.07	2.897 (2)	162
O2—H2A…O1	0.85	2.03	2.858 (2)	163
O2—H2B…N1 ⁱⁱⁱ	0.85	2.11	2.936 (2)	163
C1—H1…O1	0.93	2.48	2.799 (2)	100
C3— $H3$ ···O2 ^v	0.93	2.51	3.375 (3)	156

C7—H7…O2 ^v	0.93	2.49	3.297 (3)	145
Symmetry codes: (v) x , $y+1$, z ; (iii) x , $-y+3/2$, $z+1/2$.				

Fig. 1

